

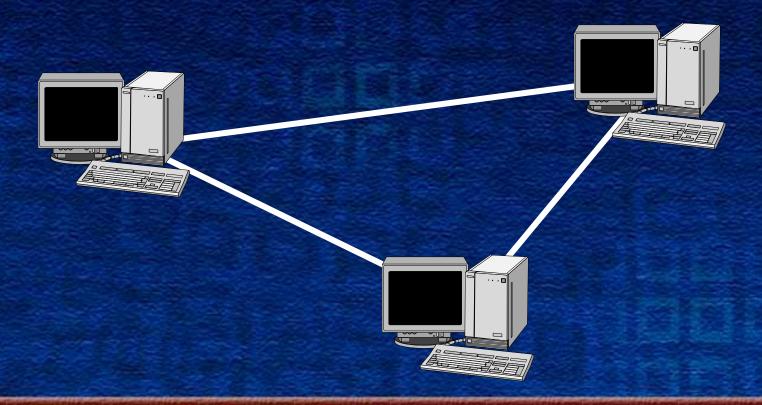
Esta obra está bajo una licencia de <u>Creative Commons</u>.

Autor: Jorge Sánchez Asenjo (año 2005)

http://www.jorgesanchez.net

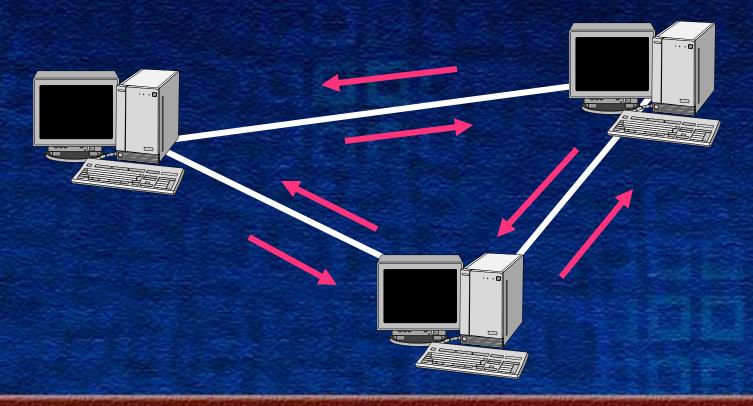
email:info@jorgesanchez.net

Esta obra está bajo una licencia de Reconocimiento-NoComercial-CompartirIgual de CreativeCommons. Para ver una copia de esta licencia, visite:

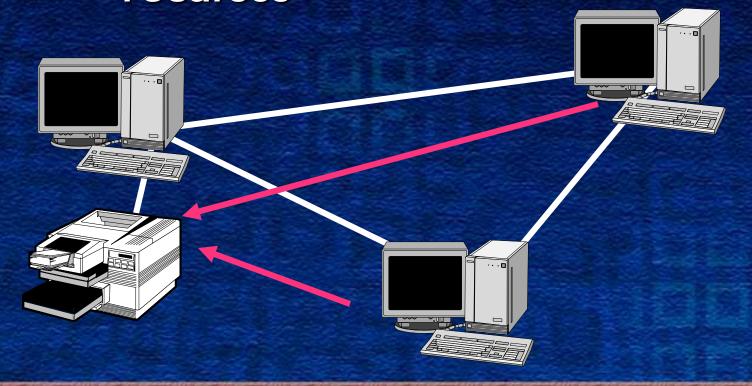

http://creativecommons.org/licenses/by-nc-sa/2.0/es/

o envíe una carta a:

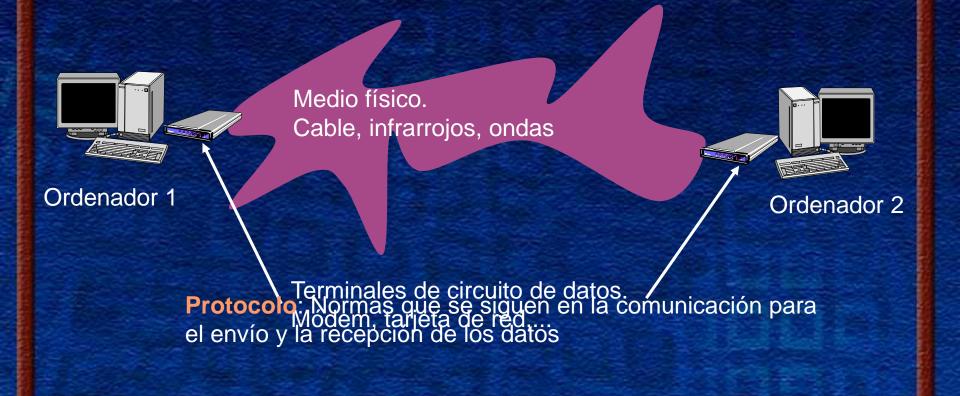
Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.


Redes de ordenadores. ¿Qué es una red de ordenadores?

Una red de ordenadores son varios ordenadores interconectados entre sí


Redes de ordenadores. ¿Qué es una red de ordenadores?

Los ordenadores se pueden comunicar entre sí



Redes de ordenadores. ¿Qué es una red de ordenadores?

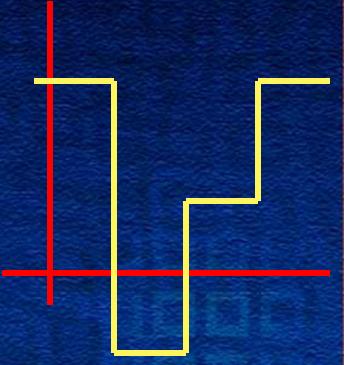
Los ordenadores pueden compartir recursos

Redes de ordenadores. Esquema general

Redes de ordenadores. Ventajas

- Se pueden enviar y recibir datos entre diferentes sitios o sucursales
- Se optimizan los recursos
- Mejora del rendimiento laboral al ser la comunicación más rápida
- Permite el uso de métodos de comunicación más avanzados


Redes de ordenadores. Desventajas


- Mayor probabilidad de perdida de información
- La información confidencial puede quedar a la vista de personas ajenas
- La propiedad intelectual es más difícil de controlar
- La Ley suele estar muy retrasada sobre el uso de las redes

Redes de ordenadores. Tipos de señales

Señal digital

Redes de ordenadores. Equipos terminales de datos

- Si la señal es analógica...
 - Hace falta una conversión digital/analógica y viceversa
 - El dispositivo que la realiza se llama módem
- Si la señal es digital...
 - Hace falta una codificación
 - El equipo que la realiza se llama códec o módem digital

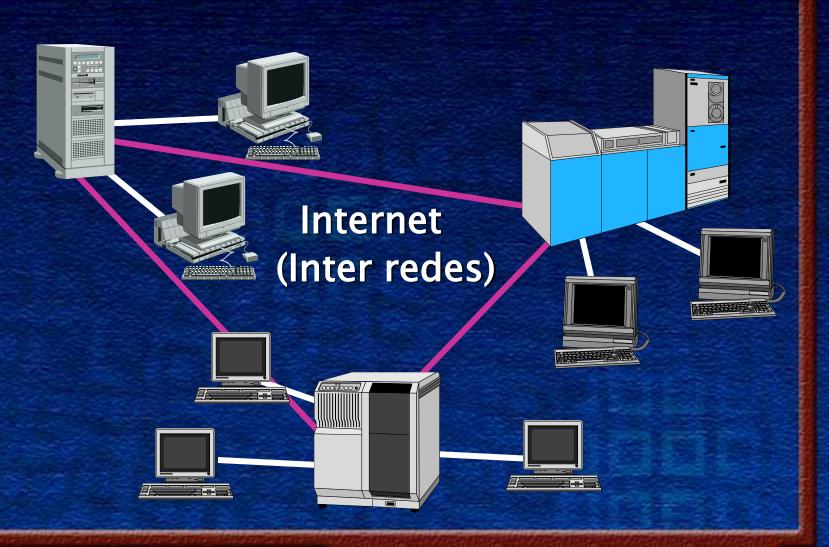
Redes de ordenadores. Protocolos

1.1 Redes de ordenadores. Protocolos

- Es un conjunto de reglas que asegura la correcta comunicación en la redes
- Todos los ordenadores de una red deben usar el mismo protocolo
- Hay diversos protocolos
- El más conocido es TCP/IP

1.2 Tipos de Redes. Por el tamaño

- Redes locales (LAN)
 - Son redes en las que los ordenadores están en el mismo edificio
 - El medio utilizado para transmitir es privado
 - La distancia de transmisión es corta.
 - La velocidad es muy elevada (De 10 Mbps a varios Gbps)


Tipos de Redes. Por el tamaño

- Redes globales (WAN)
 - Son redes en las que los ordenadores están situados a una larga distancia entre sí
 - El método utilizado para transmitir se debe contratar a alguna empresa que nos proporcione esos medios
 - La distancia de transmisión es elevada
 - La velocidad es muy baja (De 56 Kbps a 155 Mbps)

Tipos de Redes. Por el tamaño

- Redes metropolitanas (MAN)
 - Son una mezcla de las redes locales y globales.
 - Abarcan un radio de acción metropolitano.
 - Usan para la transmisión elementos de las redes locales por eso la velocidad es muy similar a la de estas.

¿Qué es Internet?

¿Qué es Internet?

- Es el conjunto de una multitud de redes intercomunicadas entre sí
- Está formada por redes de todo el mundo
- Usa como el protocolo el conjunto de reglas TCP/IP

- **1957.**
 - Se lanza el Sputnik.
 - EE.UU. Funda ARPA.
- **1963.**
 - Aparece el código ASCII
- **1968.**
 - Primera red por conmutación de paquetes.
- **1969.**
 - Se funda ARPANet.
 - Kleinrock realiza una prueba exitosa de conexión entre ordenadores.
 - 4 nodos forman ArpaNet.
 - La Universidad de California idea los RFCs

- **1970.**
 - Kevin MacKenzie inventa el primer emoticón :-)
 (significa ©)
- **1971.**
 - Comienza el Proyecto Gutemberg
- **1972.**
 - Ray Tomlinson crea el primer programa de e-mail y la notación usuario@dominio
- **1973.**
 - Bob Kahn y Vinton Cerf desarrollan TCP/IP
 - Inglaterra y Noruega unen computadoras a ARPANet.
 - Hay unas 100 computadoras conectadas.
 - Aparecen las redes locales Ethernet

- **1979.**
 - Aparece UseNet. La red de los grupos de debate
- **1980.**
 - Hay 212 computadoras conectadas.
- **1981.**
 - Unix incorpora TCP/IP
- **1983.**
 - Se impone TCP/IP como protocolo único en ArpaNet
 - ArpaNet se divide en dos.
 - Ya se habla de Internet

- **1984.**
 - Aparece el sistema DNS
- **1985.**
 - 2000 computadoras conectadas
- **1986.**
 - Se funda NSFNet. Hay 10000 computadoras
- 1988.
 - El gusano Morris afecta a 6000 de las 60000 computadoras conectadas.
 - Se crea un centro de emergencia (el CERT)
- **1989.**
 - Tim Bernes Lee idea la World Wide Web.
 - Jarkko Oikanen idea el chat.

- 1990.
 - Se desmantela ARPANet.
 - Aparece la Red Iris. España se conecta a Internet.
- **1991.**
 - 350.000 computadoras conectadas, 1000 son españolas
- **1992.**
 - Se crea la Internet Society (ISOC).
 - El número de usuarios se dobla cada tres meses.
 - Se crea el ESNIC.
 - Un millón de computadoras conectadas
 - Primeros servidores www españoles
- **1993.**
 - Se crea InterNIC.
 - Aparece el navegador Mosaic
 - 10000 computadoras españolas en Internet

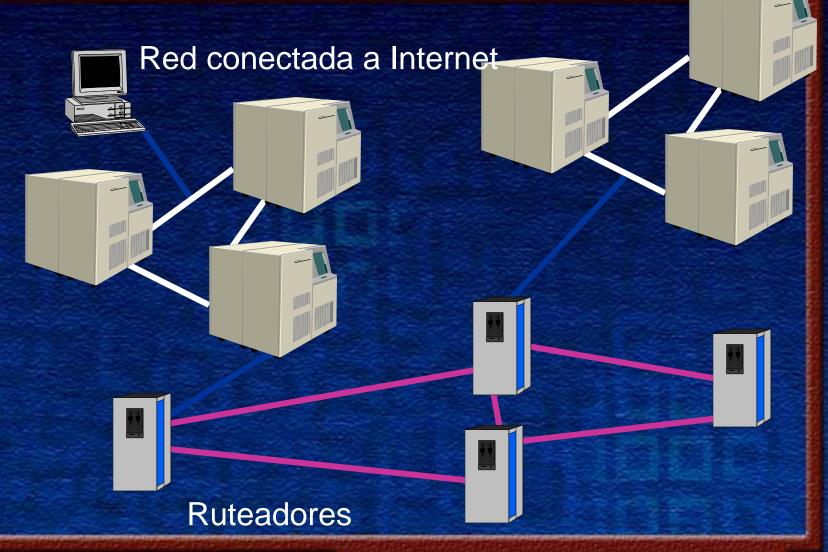
- **1994.**
 - Vladimir Levin desde San Petersburgo asalta al CityBank.
 - Hay 13 servidores web en España (en el mundo hay unos 500)
 - Aparece yahoo!
- **1995.**
 - Aparecen los navegador Netscape.
 - Aparece el Real Audio.
 - Aparece Internet Explorer.
 - NSF abandona la gestión de la red troncal.
 - Aparece el lenguaje Java.
 - La mitad de los españoles no han oído hablar de Internet
 - Aparece Olé! Inspirado en yahoo!

- **1996.**
 - Entra en funcionamiento Infovía.
 - Hay más de diez millones de computadoras en Internet (en España 100.000)
 - Comienza la guerra de navegadores entre Netscape y Microsoft
 - Aparece la telefonía por Internet (Internet Phone)
- **1997.**
 - 16 millones de computadoras conectadas.
 - Aparecen alternativas a Infovía.
 - Algunos proveedores regalan el acceso a Internet
 - Empieza a ofrecerse el ADSL

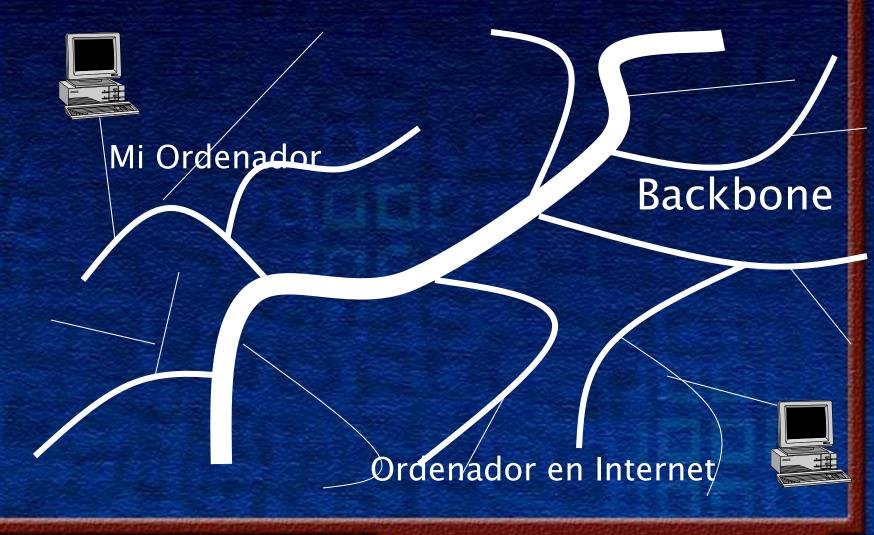
- 1998.
 - Se crea el ICANN
 - Empieza a hablarse del e-commerce
 - Se elimina Infovía y aparece Infovía Plus
 - El juicio Clinton-Lewinsky se convierte en todo un acontecimiento en Internet
 - Juicio anti-monopolio contra Microsoft
 - Se crea Google
- **1999.**
 - 50 millones de computadoras conectadas
 - El contenido de Internet desborda
 - Los buscadores no son capaces de buscar más del 50% del contenido
 - Aparece Terra. Empieza la guerra de los portales

- **2000.**
 - El virus I Love You contagia a millones de ordenadores en todo el mundo
 - Se desarrolla Internet2 para el mundo científico
 - Ante la demanda de nombres, la ICANN lanza nuevas terminaciones
 - Google desbanca a yahoo! Como principal buscador de Internet
- **2001.**
 - Se ilegaliza Napster
 - Los atentados del 11 de Septiembre colapsan la web

- **2002**
 - Se empieza a popularizar la tarifa plana en España
 - Se popularizan los servicios P2P como Kazaa o e-mule
- **2003.**
 - Sentencia a favor de Kazaa
 - Se estima que se descargan ilegalmente más de 2000 millones de archivos al mes
 - Crisis del spam
 - Microsoft anuncia que no habrá más versiones de Internet Explorer

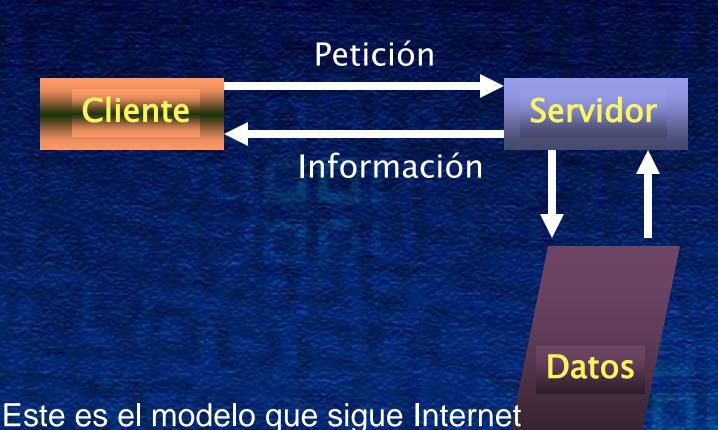

2004

- El virus MyDoom contagia 1 de cada 12 mensajes de correo electrónico
- Hay 924 millones de usuarios de Internet (13,4 millones en España, 184 millones en Estados Unidos y 100 millones en China)
- La banda ancha crece espectacularmente en España
- **2007**
 - Se esperan 1350 millones de usuarios en Internet

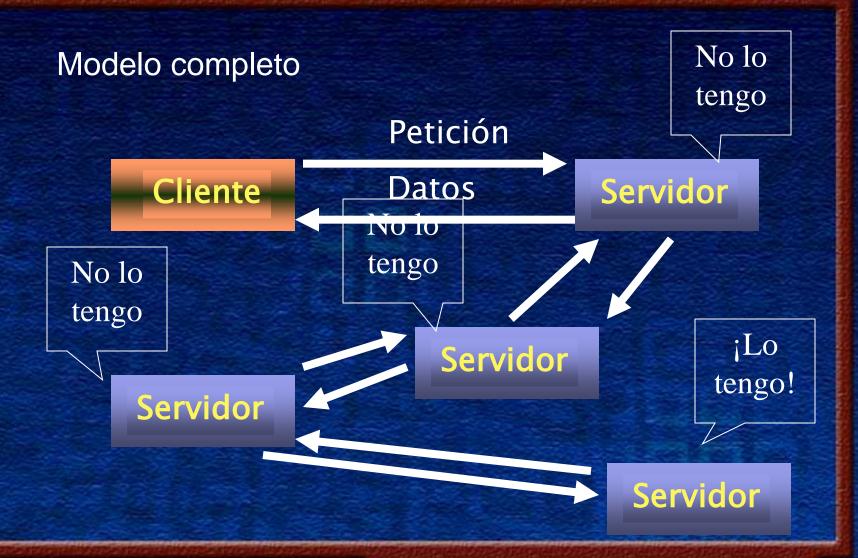

Servicios de Internet

- La Web (www)
 - Examinar información
 - Descargas
 - Correo web
 - Banca electrónica
 - Subastas
- Correo electrónico (e-mail)
- Grupos de debate (news)
- Transferencia de archivos (ftp)
- Conexión remota (telnet)
- Charlas (chat)
- Videoconferencia
- Juegos en línea
- Servicios P2P

Funcionamiento de Internet. Estructura lógica


Funcionamiento de Internet. Estructura lógica

Funcionamiento de Internet. Servidores


- Hay ordenadores que están conectados físicamente a Internet. Son los servidores (hosts)
- Hay ordenadores conectados a redes primarias
- Pero la mayoría están conectados a redes secundarias

Funcionamiento de Internet Modelo Cliente/Servidor

Copyleft - Jorge Sánchez '2005 – www.jorgesanchez.net

Funcionamiento de Internet Modelo Cliente/Servidor

Funcionamiento de Internet Direcciones

- Todos los ordenadores anfitriones conectados a Internet tienen una única dirección.
- A esa dirección se la llama dirección IP.
- Consta de 32 bits. Se divide en cuatro números que van del 0 al 255.
- Ejemplo: 128.45.37.8

Funcionamiento de Internet Nombres

- Es difícil aprenderse las direcciones IP de cada anfitrión
- A cada anfitrión en Internet se le asigna un nombre de dominio que distinguirá a cada anfitrión
- Los nombres distinguen entre mayúsculas y minúsculas y no pueden llevar espacios
- El formato de estos nombres es

Nombre-recurso.segundo-nivel.primer-nivel

Funcionamiento de Internet Nombres

- Primer nivel. Indican el país o el tipo de organización al que pertenece el anfitrión. (es, com, fr, uk, edu, gov, mil, net, org)
- Segundo nivel. Nombre de la organización que posee o administra la red en la que está conectado el anfitrión. (microsoft.com, whitehouse.gov)
- Nombre de recurso. Identifica el recurso en concreto de la red (suele ser el nombre de un determinado grupo de servidores de la red)

Funcionamiento de Internet Nombres. Algunas terminaciones

- Dominios globales. .com, .net., org
- Dominios nacionales. .es, .fr, .uk, .ru, .ita, .de, .pt, .mx, .ar, .aq
- Dominios de estados unidos. .edu, .gov., .mil
- Los nuevos dominios. .biz, .pro, .museum, .coop, .aero, .info, .name
- Organismos internacionales. .int
- Dominios dobles. .com.es, .law.pro

Funcionamiento de Internet Servidores DNS

- El protocolo TCP/IP tiene que usar siempre direcciones IP.
- Esto provoca que haya que traducir los nombres a formato de direcciones IP.
- Para ello necesitamos un servidor DNS, que es el que se encarga de traducir los nombres que usemos en direcciones IP.

Funcionamiento de Internet Servidores DNS

Protocolos de Internet. Programas cliente

- Cada servicio de Internet debe pedirse siguiendo unas complicadas normas
- Estas normas se llaman protocolos
- Los programas cliente transmiten hacia Internet utilizando el protocolo que corresponda
- Y se comunican con nosotros utilizando un lenguaje más sencillo

Protocolos de Internet. Programas cliente

Internet Respuesta En el protocolo que corresponda

Petición

En el protocolo que corresponda

Respuesta

En lenguaje sencillo

Petición

Yo

En lenguaje sencillo

Programa cliente

Protocolos de Internet. Algunos protocolos

Protocolo	Servicio
FTP	Transferencia de archivos
НТТР	Páginas Web
IMAP	Entrada de Correo
IRC	Chat
NNTP	Grupos de noticias UseNet
SMTP	Correo
POP3	Entrada de correo
Telnet	Acceso remoto

Modelo TCP/IP. Transmisión de paquetes

- Todas las respuestas y peticiones que viajan en Internet, viajan pasando por múltiples nodos
- Los mensajes se dividen en pequeños paquetes al enviarse
- Cuando llegan al destino se recomponen

Modelo TCP/IP. Niveles

- Cada protocolo de Internet tiene una misión específica
- Los mensajes se descomponen siguiendo varios pasos estrictos.
- Cada paso se realiza según las normas de un determinado protocolo.
- De este modo cada protocolo incluido en TCP/IP está relacionado con un determinado nivel (hay cuatro niveles)

Modelo TCP/IP. Niveles

- Aplicación. Sirve para traducir la información del usuario a información comprensible por el ordenador. Protocolos: HTTP, FTP, TELNET,...
- Transporte. Divide el mensaje en paquetes y les asigna un orden.
 Protocolos: TCP, UDP.
- Red. Asigna a cada paquete la dirección de envío y el tiempo de vida.
 Protocolos: IP
- Física. Se encarga de transmitir en sí el paquete. Protocolos: LAN, PPP, SLIP.

Nivel de aplicación

Para: jose@ctv.es

Asunto: Saludo

Hola Jose

Mensaje de correo

Protocolo SMTP

Nivel de aplicación

To: jose@ctv.es "Jose"

About:Saludo

From: alicia@prueba.com

ContentType: MIME

ContentText: "Hola Jose"

Correo entendible por el ordenador

Nivel de aplicación

Nivel de transporte

To: jose@ctv.es "Jose"

About:Saludo

From: alicia@prueba.com

ContentType: MIME

ContentText: "Hola Jose"

Correo entendible por el ordenador

Protocolo TCP

Nivel de aplicación

↓

Nivel de transporte

1

2

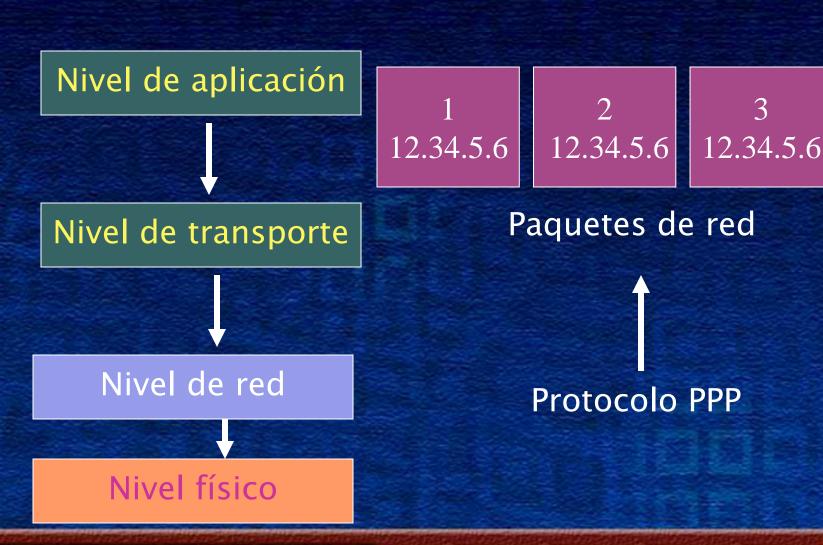
3

Paquetes ordenados

Nivel de aplicación Nivel de transporte Nivel de red

Nivel de aplicación

Nivel de transporte


Nivel de red

1 12.34.5.6

2 12.34.5.6

3 12.34.5.6

Paquetes de red

Nivel de aplicación

Nivel de transporte

Nivel de red

Nivel físico

Información entendible por el medio físico

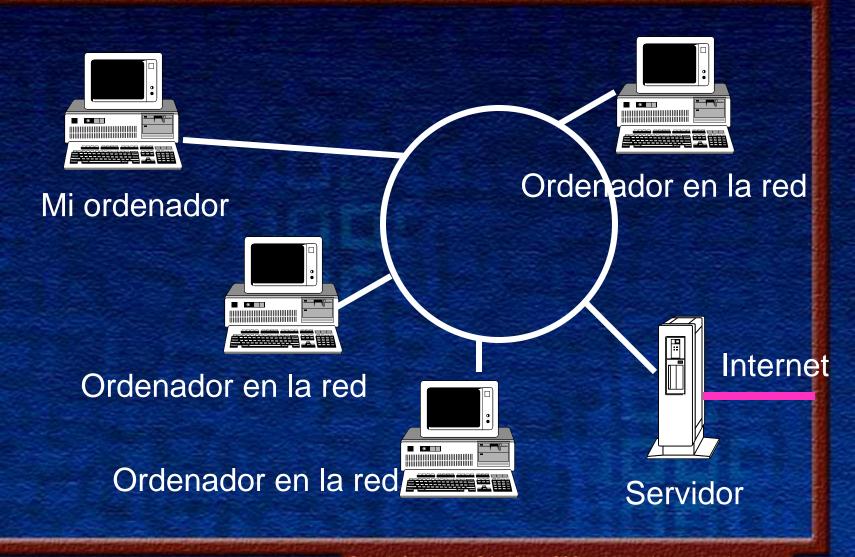
Modelo TCP/IP. Puertos

- Todos los paquetes que viajan por Internet hacen referencia a un servicio concreto.
- Normalmente los anfitriones de Internet sólo atienden ciertos servicios
- Para acertar con los servidores, cada paquete contiene un número que indica el tipo de servicio
- A este número se le llama número de puerto.

Modelo TCP/IP Puertos

Protocolo	Puerto
FTP	21
НТТР	8080
IMAP	143
IRC	194
NNTP	119
SMTP	25
POP3	110
Telnet	23

Modelo TCP/IP Puertos




Servidor Web Servidor SMTPServidor chat Servidor new

Petición. Puerto: 8080

Conexión a Internet. A través de red local

Conexión a través de red local A través de una red distante

Conexión a Internet Tecnologías de conexión

- Línea telefónica normal.
 - Alcanza como mucho 56 Kbps (28 para la bajada y 28 para la subida)
 - Instalación sencilla
- Línea RDSI
 - Tiene dos canales a 64 Kbps cada uno
 - Es cara

Conexión a Internet Tecnologías de conexión

- ADSL
 - La velocidad puede llegar hasta 10 Mbps de bajada
 - Usa la línea telefónica normal
 - Hace falta módem especial
 - Es muy caro
- Cable
 - Usa fibra óptica
 - Llega hasta 40 Mbps
 - Hace falta módem de cable
 - Es muy caro

Conexión a Internet Tecnologías de conexión

- PLC
 - Aún es experimental
 - Puede alcanzar velocidades de varios Mbps
 - No se puede contratar todavía
- Satélite
 - Utiliza ondas y equipo especial
 - Es muy cara y a veces hace falta conexión telefónica para enviar datos
 - Llega hasta 20 Mbps
- Empresariales y dedicadas

Conexión a Internet Tecnologías de conexión. Comparativa

- Módem (1)
- RDSI de 1 canal (1,3)
- RDSI de 2 canales (2,5)

ADSL o Cable a 256 Kbps (10)

ADSL o Cable a 2 Mbps (40)

Línea dedicada a 155 Mbps (3500)

Conexión a Internet Tecnologías de conexión. Uso en España

- ADSL (1,0%)
- **Cable (1,8%)**
- **RDSI (2,8%)**

Línea telefónica normal (94%)

Febrero 2001. Fuente: NetValue

Conexión a Internet Tecnologías de conexión. Uso en España

- **RDSI (3,5%)**
- **Cable (9,7 %)**
- **ADSL (34,3%)**
- Línea telefónica normal (52,9%)
- Otras (0,6%)

Octubre 2004. Fuente: INE

Conexión a Internet Requerimientos

- Software:
 - Necesitamos el protocolo TCP/IP (no suele ser un problema)
 - Necesitamos instalar los programas clientes necesarios
- Hardware
 - Máquina que utilizaremos para navegar
 - Módem o router para conectar la máquina con la línea

Conexión a Internet Datos necesarios

- Imprescindibles para la conexión
 - Número de acceso telefónico (si la conexión es por módem)
 - Nombre de usuario y contraseña
 - Número de teléfono de consulta
 - Servidores DNS (salvo que se coloquen automáticamente)
 - Dirección IP (salvo que se asigne dinámicamente)

1.9 Conexión a Internet Datos necesarios

- Imprescindibles para usar correo:
 - Dirección de nuestro correo de Internet
 - Usuario y contraseña para el correo
 - Nombre del servidor de correo entrante (POP3)
 o página web desde la que se lee el correo
 - Nombre del servidor de correo saliente (SMTP) salvo si se lee desde una página web
- Aconsejables:
 - Teléfono de consulta
 - Nombre de dominio del proveedor
 - Nombre del servidor de noticias (NEWS) para poder utilizar este servicio